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Abstract

The paper presents a procedure whereby Poisson’s ratio and the dynamic Young’s modulus of isotropic and

homogeneous materials are determined using two of the first four frequencies of natural vibration in thin rectangular

plates. The procedure is based on suitable approximate relationships, relating the resonance frequencies to the elastic

constants of the material. These relations were derived from those of Warburton by taking into account a correction factor

obtained by an extensive series of numerical analyses carried out by a finite element code. In order to verify the procedure,

a comparison with reference solutions has been made.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Determining the elastic properties of materials by analysing their dynamic response is a well-known
technique. Its non-destructive and economical nature, the accuracy of the results provided, simplicity, and ease
of implementation make it very attractive for both research and industrial contexts.

The applicability of the resonance method depends on knowledge of the frequency equations relating the
natural frequencies of a suitable test specimen to the dynamic elastic properties and the density of the material.
These equations are solutions of a differential equation, which, generally, depend on the boundary conditions
and on the shape of the specimen in a very complicated way. Analytical closed form solutions are, for these
reasons, limited to simple geometries and boundary conditions [1,2].

Procedures and recommendations for the elastic characterization of homogeneous and isotropic materials
using free-edge test specimens like slender bars (rectangular cross section), rods (cylindrical cross section), and
circular plates are specified in ASTM Standards [3,4], while methods used to characterize the elasticity of
cylindrical samples and thin square plates are proposed in Refs. [5] and [6], respectively.

Recently, a great number of techniques for the identification of the elastic properties of both isotropic or
orthotropic materials have been proposed. In these techniques, the response of a numerical model of the
specimen is correlated with the experimental observations of its real structural behaviour. Unknown material
parameters in the numerical model are updated until the computed structural behaviour matches the
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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experimental observations as closely as possible. The values of the parameters used in the numerical model in
the last computation are the results of the identification procedure and yield the elastic properties of the
specimen.

In principle, the approach makes it possible to identify all the elastic properties simultaneously from a single
experiment and without damaging the structure. The measured data are generally the first natural frequencies.
The Rayleigh–Ritz type [7–12] or Rayleigh type [13–16] analytical approaches, the finite element method
(FEM) [17–22] or the approximate method based on the concept of sinusoidal equivalent length [23,24] have
been adopted.

It must be pointed out that in almost all the methods mentioned above, initial estimates of the engineering
constants must be available to start the procedures for the iteration or the optimization processes necessary for
the determination of the elastic properties.

An original method allowing the direct determination of the flexural stiffness from natural frequencies and
modal shape measurements of plate specimens of any shape, which does not require initial estimates of the
stiffness nor iterative computati ons, is proposed in Refs. [25,26]. This methodology has, unfortunately, the
disadvantage of requiring complicated techniques to measure the modal shapes.

However, the elastic constants could be determined more simply, without procedures for the iteration or the
optimization processes and this could be done by using any flat plates, if frequency equations were known.

In the present paper the feasibility of using free rectangular thin plates has been investigated. It is well
known that no closed-form analytical solutions exist to the eigenvalue problem in this case.

To seek practical solutions, many researchers have resorted to numerical approximations. For example, the
Ritz energy method provides accurate solutions. However, it depends largely on the choice of the global
admissible functions representing the displacement fields. Well-known existing functions have been expressed
in terms of finite series such as trigonometric functions [27–29]. Warburton [28] used characteristic beam
vibration functions to obtain, for any boundary conditions, a simple frequency equation relating the natural
frequency to the dimensions of the plate, density and elastic constants of the material. These formulas are very
useful from an engineering point of view but they are too approximate to be used in a procedure for the
determination of the elastic constants. In this paper correction factors for Warburton’s formulas are proposed.
The correction factors were obtained using the results of an extensive series of numerical dynamic analyses
carried out by a commercial finite element code. Therefore, the paper describes a procedure whereby, using the
corrected frequency equations, Poisson’s ratio n and the dynamic Young’s modulus E of free rectangular thin
plates are determined. The procedure requires the measurement of two of the first four natural frequencies
and, in some cases, the corresponding modal shapes.

2. Approximated frequency expressions

There has been a great deal of research published on the flexural vibrations of rectangular plates. Classical
analytical methods have been used to deal with the flexural vibration of thin isotropic plates with different
edge conditions. Exact analytical solutions of the governing differential equations have been determined for
the case of a rectangular plate that is simply supported at all four edges or having two opposite edges simply
supported with any conditions at the other edges [1]. For rectangular plates with other combinations of edge
conditions, the solutions are more complicated. To seek practical solutions many researchers have resorted to
various approximate analytical methods.

Warburton [28] used characteristic beam vibration functions in Rayleigh’s method in order to obtain, for
any boundary conditions and for each mode of vibration, a very useful, simple and approximate formula
expressing natural frequency in terms of dimensions of the plate, density and elastic constants of the material.
Such a formula assumes the following form:

f ¼
p
2

ffiffiffiffiffi
D

rt

s
l
a2

, (1)

where D ¼ Et3=½12ð1� n2Þ� is the flexural stiffness of the plate, E and n are the elastic constants, r is the
density of the material, t is the thickness and f is the natural frequency while l is a non-dimensional factor
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Fig. 1. Schematic representation of the specimen.
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obtained using a table reported in Ref. [28]. The frequency factors l depend on the ratio a/b (a and b are the
lengths of the sides of the plate, see Fig. 1), and also upon n, if one or more edges of the plate are free.

Eq. (1) together with the knowledge of the l expressions allows the straightforward calculation of natural
frequencies of plates having any combination of free, clamped, or simply supported edges, if the elastic
constants are given. Vice versa, they also allow the elastic constants to be determined if natural frequencies are
measured.

The accuracy of the frequencies calculated by Eq. (1) is excellent for plates having no free edges. However, if
one or more free edges exist, then the accuracy can decrease significantly. Warburton’s formulas are, still
today, the only ones that can be found in the published literature which take into account, for each resonant
mode of vibration and in a concise way, the effects of both the a/b ratio and Poisson’s ratio variations on the
resonant frequency.

Leissa [2,29] presented more accurate analytical results for the free flexural vibration of isotropic
rectangular plates with n ¼ 0:3. In this case the Ritz method with 36 terms containing the products of beam
functions was applied.

Today, numerical methods play a very important role in dealing with complicated structural dynamic
problems. In particular, the FEM is extremely well suited to the computer solution of free and forced vibration
problems associated with complex plate or shell structures and for isotropic materials it gives very accurate
results. In the present paper, FEM was used to determine the dependence of the frequency factors l upon n in
order to improve the accuracy of the Warburton formulas so that they are suitable in a procedure determining
the elastic properties.

The case of thin rectangular plate with free edges was explored for various modes of flexural vibration and
for different a/b ratios. The results were compared with those obtained by Warburton and when possible with
those of Leissa.

3. Finite element models and modal analysis

The values of the frequency factors l upon n were derived from an extensive series of numerical analyses
carried out by a commercial finite element code. In particular, the values of the resonant frequencies were
calculated for various values of n and for a defined geometry of the plate, and for fixed values of material
density and Young’s modulus. Then, l was computed, for each n, by mathematically inverting Eq. (1). A
proper numerical investigation have confirmed that, as reported in Ref. [28], l does not depend on E. In
addition, it has been verified that for a thin plate (a=tX100) l does not depend on the ratio a/t.

The normal mode analysis for predicting the natural frequencies of the plates was carried out, neglecting
damping effects, by using Solution 103 of the general-purpose finite element code MSC/NASTRAN, with
MSC/PATRAN as the pre- and post-processor. The Lanczos extraction method [30] was adopted.

2-D finite element models of four free thin plates with aspect ratio (a/b) equal to 1, 1.5, 2.0, 2.5, respectively,
have been developed. Quadratic eight node (CQUAD8) elements were used and both the effect of the
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transverse shear deformation and of the rotary inertia were neglected. The boundary conditions for the models
were all edge free. A convergence study was done to determine the mesh density at which the values of the first
10 fundamental frequencies converge. The number of elements assumed for the four plates examined were
40� 40, 40� 60, 40� 80 and 40� 120, respectively. In order to verify the accuracy of the models, they were
used to determine the undamped free flexural vibrations of aluminium plates simply supported on all edges.
Eigenfrequencies given by the FEM code were compared with those obtained by the following exact analytical
solutions [1]:

f ðm;nÞ ¼
p
2

ffiffiffiffiffi
D

rt

s
m� 1

a

� �2

þ
n� 1

b

� �2
" #

, (2)

where m and n are the numbers of nodal lines along directions x and y, respectively. The results have shown
that the difference between frequencies given by FEM and Eq. (2) is less than 0.05%.

Denoting the mode of vibration by the numbers of nodal lines is suitable where the nodal lines are
approximately parallel to the sides of the rectangle. This is the case in rectangular plate with free edges, but it
is well known that non-parallel patterns can be observed for a free-edged square plate. In this case, in fact, if
m ¼ n or m� n ¼ �1;�3;�5; . . . the normal modes of vibration are of the type (m; n) with nodal lines
approximately parallel to the sides, while, when m� n ¼ �2;�4;�6; . . ., the normal modes are of the type
(ðm; nÞ � ðm; nÞ), with patterns that do not consist of lines parallel to the sides of the plate.

3.1. Free square plates

The first four modes of vibration of a square isotropic steel thin plate ðn ¼ 0:3Þ with free edges are illustrated
in Fig. 2 along with the modal designations and the relative frequencies (with respect to the first frequency).
Fig. 2. First four modal shapes and relative frequencies (with respect to the fundamental frequency) for a free steel plate (n ¼ 0:3).
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All the vibration modes reported in the figure were obtained by the finite element code. The (1,1) mode (‘+’
mode), the lowest mode, is pure twisting motion; the frequency of the ((2,0)+(0,2)) mode is greater than the
((2,0)�(0,2)) mode because of the Poisson coupling, in particular these modes have frequencies which differ by
Fig. 3. Variation in the frequency factors with n for a=b ¼ 1:0; (– –) Warburton [28], (� ) Leissa [29], (K) FEM.

Fig. 4. Variation in the frequency factor with n: (a) a=b ¼ 1:5, (b) a=b ¼ 2:0, (c) a=b ¼ 2:5; (– –) Warburton [28], (� ) Leissa [29],

(K) FEM.
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an amount which is a measure of the strength of Poisson’s ratio coupling. They are generally referred to as the
‘X’ mode and the ‘O ring’ mode. The modes (2,1) and (1,2) may be similarly replaced by the non-degenerate
combination modes ((2,1)7(1,2)), but all three modes have the same frequency, because the Poisson coupling
does not favour one or the other combination.

The variation in the lowest four frequency factors l upon n is reported in Fig. 3. In particular, the graph
compares the variation of the frequency factors calculated by FEM with the Warburton frequency factors
and, the values obtained by Leissa for n ¼ 0:3. The FEM values were obtained by means of the procedure
described in the previous section, varying n between 0.01 and 0.5 in steps of 0.01. These values are reported in
the appendix in the first four columns of Table A1. It can be observed that only the numerically calculated
factors corresponding to the ((2,0)7(0,2)) modes of vibration are in good agreement with the Warburton
values, while, an excellent agreement can be found with the Leissa values.
3.2. Free rectangular plates

The first four vibration modes of a free-edged, rectangular isotropic steel plate ðn ¼ 0:3Þ, for three different
values of a/b (1.5, 2.0, and 2.5) are illustrated in Fig. 2. Note that the sequence and precise details of mode
shapes depend on the particular values of elastic constants and geometrical dimensions. Fig. 4 shows the
variations in the first four frequency factors with Poisson’s ratio for each a/b examined. In the same figure
FEM results are compared with those obtained by Warburton and Leissa.

For a=b ¼ 1:5 (Fig. 4a), it can be observed that the modal shape of the lower natural frequency is (0,2) for n
less than approximately 0.13 while for larger n the modal shape is (1,1). Vice versa, the second resonant
frequency vibrates the plate in the mode (1,1) for n less than approximately 0.13 while for larger n the modal
shape becomes (0,2). The modal shapes (2,0) and (1,2) are associated to the third or to the fourth natural
frequency according to the value of n (modes inversion occurs at nffi 0:12)U

For a=b ¼ 2 (Fig. 4b), only the reversing between the two modes (1,2) and (0,3) can be observed (inversion
occurring at nffi 0:24). No modal reversals occur for a/b as large or larger than 2.5 (Fig. 4c). In these cases, as
for the case of square plate, the modal shape associated to any order of frequency does not change varying n.
4. Procedures for the elastic characterization

This section describes a procedure for the identification of elastic properties of isotropic materials from the
measurement of the frequencies of two of the first resonant modes of free thin rectangular plates.

In principle, Poisson’s ratio can be determined by the frequency ratio f ðh;kÞ=f ðl; jÞ of two generic ðh; kÞ and
ðl; jÞ resonant modes. In fact, as can be deduced from Eq. (1), the frequency ratio f ðh;kÞ=f ðl; jÞ is equal to the
frequency factors ratio lðh;kÞ=lðl;jÞ and they are only dependant on n for a given value of a/b. Then, n can be
straightforwardly determined from f ðh;kÞ=f ðl;jÞ if this dependence is known.

The value of n could be used to evaluate Young’s modulus. In fact, inverting Eq. (1) and introducing the
mass m of the specimen, Young’s modulus is expressed as

E ¼
48

p2
f

lðnÞ

� �2
ma3ð1� n2Þ

bt3
, (3)

where f is one of the two resonant frequencies considered.
The procedure for determining n and E can be summarized in three steps. First, two resonance frequencies

are experimentally measured, their modal shape identified and the frequency ratio is computed. Second,
Poisson’s ratio is found by a graph or by a proper numerical table from the frequency ratio computed in the
previous step. Finally, E is calculated by using Eq. (3).

In any case, the accuracy of the results depends on the accuracy of the natural frequencies measurement.
The first low resonant frequencies are always preferable, because the measurement of the highest natural
frequencies, generally, is more difficult and not very accurate. However, the accuracy of the results also
depends on the sensitivity of n to the changes in the chosen frequency factor ratio (i.e., the slope of the curve
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relating Poisson’s ratio with the frequency factor ratio). As it will be seen in the following paragraphs, ratios
related to large slope variations should be avoided.

In order to verify the present procedure, experimental data given in the bibliography were considered; in
such a way a comparison with reference solutions has been made.

4.1. Application to a square plate

The variations of n with frequency factor ratios, for all the possible combinations of the first four modes of
vibration of a square plate, are illustrated in Fig. 5. In principle, the value of n could be graphically obtained
from the value of any f ðh;kÞ=f ðl;jÞ. It is sufficient to find the intersection point of the lðh;kÞ=lðl;jÞ vertical line and
the curve. The ordinate of this point is the value of n for the material. If higher precision is desired, tabulated
values reported in Table A1 should be used.

Practically, the sensitivity of n to the changes in frequency factor ratio, represented from the slope of the
curve considered, should be taken into account. Relatively flatter curves propagate the experimental errors on
frequency measurements less and are preferable. The sensitivity plays a very important role in choosing the
more suitable ratio lðh;kÞ=lðl;jÞ to compute n. The slope variations of the curves with the frequency factor ratio
show f ðð2;0Þþð0;2ÞÞ=f ð1;1Þ and f ð2;1Þ=f ðð2;0Þþð0;2ÞÞ as the more suitable frequency ratios to use for the calculation of n
because they are less prone to experimental errors.

From the same figure we can observe that f ðð2;0Þþð0;2ÞÞ=f ðð2;0Þ�ð0;2ÞÞ is also appropriate. A good agreement was
found between this function and the well-known Warburton approximate function [28]

nffi 1:389
f 2
ðð2;0Þþð0;2ÞÞ

.
f 2
ðð2;0Þ�ð0;2ÞÞ � 1

f 2
ðð2;0Þþð0;2ÞÞ

.
f 2
ðð2;0Þ�ð0;2ÞÞ þ 1

. (4)

By applying the theory of the uncertainty propagation it can be shown that, when one of the three
aforementioned ratios is used for characterizing a material with n around 0.3, a relative error of 0.1% on the
measured frequencies implies an error on the calculated elastic constants of less than about 1%. The estimated
errors are much higher when the other frequency ratios are used.

To show how the procedure works we considered the square aluminium plate investigated in the paper of
Deobald and Gibson [10]. The dimensions of the plate and the density of the material are reported in Table 1.
In the same table in increasing order the first four natural frequencies measured are also reported. The modal
shapes corresponding to these frequencies are directly identified from Fig. 3 (f I ¼ f ð1;1Þ; f II ¼ f ðð2;0Þ�ð0;2ÞÞ; f III ¼

f ðð2;0Þþð0;2ÞÞ and f IV ¼ f ð2;1Þ). The values of n determined by using Table A1 from the three more suitable
Fig. 5. Variation in n with the ratio of the frequency factors for a=b ¼ 1:0; (B) lðð0;2Þ�ð2;0ÞÞ/lð1;1Þ, (W) lðð0;2Þþð2;0ÞÞ/lð1;1Þ, ( ) lðð0;2Þþð2;0ÞÞ/
lðð0;2Þ�ð2;0ÞÞ, (%) lð2;1Þ/lð1;1Þ, ($) lð2;1Þ/lðð0;2Þ�ð2;0ÞÞ, (m) lð2;1Þ/lðð0;2Þþð2;0ÞÞ.
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Table 1

Dimensions, density and natural frequencies of the aluminium plate investigated in Ref. [10]

Length, a (cm) Width, b (cm) Thickness, t (cm) Density, r (g/cm3) a/b fI (Hz) fII (Hz) fIII (Hz) fIV (Hz)

25.4 25.4 0.316 2.77 1 156.70 232.50 300.40 411.70

Table 2

Values of the elastic constants obtained with the present method for the aluminium plate investigated in Ref. [10]

Frequency ratio n Young modulus, E (GPa)

f ðð0;2Þþð2;0ÞÞ=f ð1;1Þ f III=f I 1.917 0.369 f ðð0;2Þþð2;0ÞÞ 70.61

f ð1;1Þ 69.71

f ðð0;2Þþð2;0ÞÞ=f ðð0;2Þ�ð2;0ÞÞ f III=f II 1.292 0.354 f ðð0;2Þþð2;0ÞÞ 71.86

f ðð0;2Þ�ð2;0ÞÞ 71.80

f ð1;2Þ=f ðð0;2Þþð2;0ÞÞ f IV=f III 1.371 0.366 f ð1;2Þ 71.05

f ðð0;2Þþð2;0ÞÞ 70.86

Mean values 0.363 — 70.98

Table 3

Comparison between the values of the elastic constants calculated with the present method with those obtained in Refs. [10,17]

[10]a [17]a Present

E1 (GPa) 69.50 72.20 70.98

E2 (GPa) 69.90 73.30

n 0.361 0.356 0.363

aAverage values.
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ratios f ðð2;0Þþð0;2ÞÞ=f ð1;1Þ, f ðð2;0Þþð0;2ÞÞ=f ðð2;0Þ�ð0;2ÞÞ, f ð1;2Þ=f ðð2;0Þþð0;2ÞÞ are presented in Table 2. The values of n
calculated by the remaining frequency ratios f ðð2;0Þ�ð0;2ÞÞ=f ð1;1Þ; f ð1;2Þ=f ð1;1Þ and f ð1;2Þ=f ðð2;0Þ�ð0;2ÞÞ are not reported

because they are not accurate enough. Table 2 also illustrates the values of Young’s modulus calculated by
Eq. (3) for each n and natural frequency. In Table 3 the present results and those obtained from Deobald and
Gibson [10], with a modal analysis/Rayleigh–Ritz techniques and using the first five natural frequencies, are
compared. A comparison is also made with the results obtained from Hwang and Chang [17] by using the first
six natural frequencies with a method combining finite element analysis and optimum design. Both the
methodologies are suitable for isotropic and orthotropic materials. The authors treated the isotropic plate as a
transversely isotropic material and tried to obtain four elastic constants: the longitudinal Young’s modulus E1,
transverse Young’s modulus E2, major Poisson’s ratio n12 and the in-plane shear modulus G12. It was shown
that the four elastic constants approximately satisfy the condition for isotropic materials: E1 ¼ E2,
G12 ¼ E1=2ð1þ n12Þ.

A good agreement can be observed between the present values and those reported in Refs. [10,17]. The
discrepancies between the results and the typical values for aluminium could be essentially due to the fact that
natural frequencies reported in Ref. [10] were measured with experimental errors within 1%, and, to a lesser
extent, to the fact that the plate examined does not satisfy the condition a/t ¼ 100 as required by all the
methodologies mentioned above.
4.2. Application to a rectangular plate

The above procedure also works for the elastic characterization of rectangular plates. To prove this
assertion, consider the experimental data reported in Ref. [18]. Once again, the specimen analysed is an
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aluminium plate. It is of rectangular shape with a=b ¼ 1:456. The plate dimensions, the density of the material
and the natural frequencies measured are reported in Table 4.

Because this plate is not included in the cases previously presented, a proper numerical calibration has been
carried out. A comparison between these results and those obtained for a=b ¼ 1:5 are illustrated in Fig. 6. The
first step of the procedure for the elastic characterization requires the measurement of the frequencies
corresponding to two identified modal shapes. Unfortunately, the modal shapes corresponding to the natural
frequencies given in Ref. [18] and reported in Table 4 are not specified. Neither does the observation of the
graph in Fig. 6 give this information unequivocally (e.g., the third natural frequency fIII could correspond to
the (2,0) mode of vibration if n is less than 0.12 or to (1,2) mode in the other case). So, the procedure would not
seem to be directly applicable. But, if we have additional knowledge such as that the tested material has n
greater than 0.12, then Fig. 6 can give a satisfactory solution to the problem of the modal shapes, in fact they
will be f I ¼ f ð1;1Þ, f II ¼ f ð0;2Þ, f III ¼ f ð1;2Þ, f IV ¼ f ð2;0Þ. In Fig. 7, the three curves less sensitive to frequency
factor ratio error are shown, namely, n versus lð2;0Þ/lð1;1Þ, lð1;2Þ/lð0;2Þ and lð2;0Þ/lð0;2Þ. The numerical values of the
plotted data can be found in Table A2. If a material with n around 0.3 is characterized using one of the three
aforementioned ratios, a relative error of 0.1% on the measured frequencies provides errors on the calculated
elastic constants of less than 3%. In Fig. 7 the curves relative to the case with a=b ¼ 1:5 are also illustrated. It
can be seen that, even if the two ratios are almost equal, a significant error can occur in determining n if these
last curves are used in place of the former ones.

Now we can apply the procedure to determine Poisson’s ratio. The values of n obtained by Table A2 using
the three recommended frequency ratios f ð2;0Þ=f ð0;2Þð¼ f IV=f IIÞ, f ð1;2Þ=f ð0;2Þð¼ f III=f IIÞ and f ð2;0Þ=f ð1;1Þð¼ f IV=f IÞ

are reported in Table 5. In the same table the values of Young modulus calculated from Eq. (3) for each n and
for each natural frequency used are also reported. Finally, the comparison between the present results and
those obtained by other researchers with different iterative procedures [18–21] are reported in Table 6. The
agreement among the sets of results is quite good for Young’s modulus but not very good for Poisson’s ratio.
The discrepancies between the present values of n and those obtained in Refs. [18–21] could be attributed to
Table 4

Dimensions, density and natural frequencies of the aluminium plate investigated in Ref. [18]

Length, a (cm) Width, b (cm) Thickness, t (cm) Density, r (g/cm3) a/b fI (Hz) fII (Hz) fIII (Hz) fIV (Hz)

28.1 19.3 0.194 2.688 1.456 112.60 127.90 267.90 286.60

Fig. 6. Variation in the frequency factor with n; (’) a=b ¼ 1:456, (&) a=b ¼ 1:5.
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Table 5

Values of the elastic constants obtained with the present method for the aluminium plate investigated in Ref. [18]

Frequency ratio n Young modulus, E (GPa)

f ð2;0Þ=f ð0;2Þ f IV=f II 2.241 0.365 f ð2;0Þ 68.42

f ð0;2Þ 68.45

f ð1;2Þ=f ð0;2Þ f III=f II 2.095 0.347 f ð1;2Þ 68.40

f ð0;2Þ 68.48

f ð2;0Þ=f ð1;1Þ f IV=f I 2.545 0.384 f ð2;0Þ 67.56

f ð1;1Þ 67.72

Mean values 0.365 — 68.17

Fig. 7. Variation in n with the ratio of the frequency factors for the aspect ratios a=b ¼ 1:456 and a=b ¼ 1:5; ( ) lð1;2ÞÞ/lð0;2Þ, (B)

lð2;0Þ/lð1;1Þ, (%) lð2;0Þ/lð0;2Þ.

Table 6

Comparison between the values of the elastic constants calculated with the present method with those reported in Refs. [18–21]

[18] [19] [20] [21] Present

E1 (GPa) 68.70 69.50 71.30 67.50 68.17

E2 (GPa) 68.10 67.80 68.80 67.50

n 0.340 0.340 0.320 0.356 0.365
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the fact that the latter were obtained averaging a larger number of natural frequencies (the first nine natural
frequencies).

5. Remarks

In summary, in the case of square plate the order of magnitude of the natural frequencies identifies the
shapes of vibration unequivocally. Then, in this case, only the measurement of the resonant frequencies is
required.
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Fig. 8. Variation in n with the ratio of the frequency factors for the aspect ratio a=b ¼ 2:0 and a=b ¼ 2:5; ( ) lð1;2ÞÞ/lð0;2Þ, (B) lð0;3Þ/lð1;1Þ,
(%) lð1;1Þ/lð0;2Þ.
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When rectangular plates with values of the aspect ratio a/b of approximately 1.5 have to be chara-
cterized, the procedure can be applied providing it is possible to associate the corresponding modal
shapes to each natural frequency measured. In the case that the available experimental technique is
only able to measure the resonant frequencies without providing information on modal shapes, the order of
magnitude of the frequencies can give the desired information, unambiguously, only when the investi-
gator knows if the value of n is larger or smaller than the value at which the inversion between the modal
shape takes place.

In the graph of Fig. 8 the more suitable curves for a=b ¼ 2:0 and 2.5 are shown. If, for n around 0.3,
one of these curves is used, a relative error of 0.1% on the measured frequencies implies errors on the
elastic constants of less than about 3%. When rectangular plates with a/b ¼ 2.0 must be tested, the modal
shape can be associated to the frequency by using Fig. 4b. However, for this it is necessary to know if n
is larger or smaller than 0.23. In that case the ratios f(1,2)/f(0,2) or f(0,3)/f(1,1) can be used to obtain the
desired result from the graphs reported in Fig. 8. Ambiguity never arises if the ratio f(1,1)/f(0,2) is used
because it is always equal to the ratio between the second and first natural frequencies fII/fI in order of
magnitude.

Finally, note that the procedure works without any complications in the cases of rectangular plates with
a=b ¼ 2:5. In these cases, in fact, the modal shapes corresponding to the natural frequencies can be directly
deducible from Fig. 4c.
6. Conclusion

In the paper a procedure is presented that allows the well-known resonance method, for the elastic
characterization of homogeneous isotropic materials, to be extended to rectangular thin plate. The procedure
requires the measurement of two of the first four natural frequencies and sometimes the determination of the
corresponding modal shapes. Poisson’s ratio can be determined by using suitable graphs or numerical tables
reported in the paper and Young’s modulus can be calculated by a proper formula. Five a/b ratios have been
examined in the paper, but a numerical methodology is proposed which enables the study of rectangular plates
with any other a/b ratio. In principle, the numerical methodology could also be adapted to characterize plates
of other shape.

The procedure is suitable for being computerized and, it could be easily integrated in any of the many
existing commercial systems for measuring elastic constants by resonant method. Future research could
investigate the possibilities of application to thick plate.
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Appendix A

The non-dimensional frequency factors (l) are given in Tables A1 and A2.
Table A1

Non-dimensional frequency factors l ¼ ð2fa2=pÞ=
ffiffiffiffiffiffiffiffiffiffiffi
D=rt

p
and their most sensitive ratios for the first four modes of vibration of a square

plate

n l(1,1) l((0,2)�(2,0)) l((0,2)+(2,0)) l(2,1) l((0,2)+(2,0))/l(1,1) l((0,2)+(2,0))/l((0,2)�(2,0)) l(2,1)/l((0,2)+(2,0))

0.01 1.5955 2.2590 2.2747 3.9090 1.4257 1.0069 1.7185

0.02 1.5884 2.2511 2.2823 3.8988 1.4369 1.0139 1.7083

0.03 1.5813 2.2430 2.2899 3.8884 1.4481 1.0209 1.6981

0.04 1.5741 2.2349 2.2974 3.8779 1.4595 1.0280 1.6880

0.05 1.5669 2.2266 2.3048 3.8671 1.4709 1.0351 1.6778

0.06 1.5596 2.2183 2.3122 3.8562 1.4826 1.0423 1.6678

0.07 1.5522 2.2098 2.3194 3.8450 1.4943 1.0496 1.6578

0.08 1.5448 2.2013 2.3265 3.8337 1.5060 1.0569 1.6478

0.09 1.5373 2.1927 2.3335 3.8221 1.5179 1.0642 1.6379

0.10 1.5297 2.1839 2.3405 3.8103 1.5300 1.0717 1.6280

0.11 1.5221 2.1751 2.3473 3.7983 1.5421 1.0792 1.6182

0.12 1.5144 2.1662 2.3541 3.7861 1.5545 1.0867 1.6083

0.13 1.5067 2.1571 2.3608 3.7736 1.5669 1.0944 1.5984

0.14 1.4989 2.1480 2.3673 3.7610 1.5794 1.1021 1.5887

0.15 1.4910 2.1387 2.3738 3.7481 1.5921 1.1099 1.5789

0.16 1.4830 2.1293 2.3802 3.7349 1.6050 1.1178 1.5692

0.17 1.4750 2.1199 2.3865 3.7216 1.6180 1.1258 1.5594

0.18 1.4669 2.1103 2.3927 3.7080 1.6311 1.1338 1.5497

0.19 1.4588 2.1005 2.3988 3.6941 1.6444 1.1420 1.5400

0.20 1.4505 2.0907 2.4048 3.6800 1.6579 1.1502 1.5303

0.21 1.4422 2.0808 2.4107 3.6657 1.6715 1.1585 1.5206

0.22 1.4338 2.0707 2.4165 3.6511 1.6854 1.1670 1.5109

0.23 1.4254 2.0605 2.4222 3.6362 1.6993 1.1755 1.5012

0.24 1.4168 2.0502 2.4277 3.6211 1.7135 1.1841 1.4916

0.25 1.4082 2.0397 2.4332 3.6057 1.7279 1.1929 1.4819

0.26 1.3995 2.0291 2.4386 3.5900 1.7425 1.2018 1.4722

0.27 1.3908 2.0184 2.4439 3.5741 1.7572 1.2108 1.4625

0.28 1.3819 2.0076 2.4491 3.5579 1.7723 1.2199 1.4527

0.29 1.3730 1.9966 2.4541 3.5414 1.7874 1.2291 1.4431

0.30 1.3640 1.9855 2.4590 3.5246 1.8028 1.2385 1.4333

0.31 1.3549 1.9742 2.4639 3.5075 1.8185 1.2480 1.4236

0.32 1.3457 1.9628 2.4686 3.4901 1.8344 1.2577 1.4138

0.33 1.3365 1.9513 2.4731 3.4724 1.8504 1.2674 1.4041

0.34 1.3271 1.9396 2.4776 3.4544 1.8669 1.2774 1.3943

0.35 1.3176 1.9277 2.4819 3.4360 1.8837 1.2875 1.3844

0.36 1.3081 1.9157 2.4861 3.4174 1.9005 1.2978 1.3746

0.37 1.2985 1.9035 2.4902 3.3984 1.9178 1.3082 1.3647

0.38 1.2887 1.8912 2.4941 3.3791 1.9354 1.3188 1.3548

0.39 1.2789 1.8787 2.4979 3.3594 1.9532 1.3296 1.3449

0.40 1.2690 1.8660 2.5015 3.3394 1.9712 1.3406 1.3350

0.41 1.2590 1.8531 2.5050 3.3190 1.9897 1.3518 1.3250

0.42 1.2488 1.8401 2.5083 3.2983 2.0086 1.3631 1.3150

0.43 1.2386 1.8269 2.5114 3.2771 2.0276 1.3747 1.3049

0.44 1.2282 1.8135 2.5144 3.2556 2.0472 1.3865 1.2948

0.45 1.2178 1.7999 2.5172 3.2337 2.0670 1.3985 1.2846

0.46 1.2072 1.7861 2.5198 3.2114 2.0873 1.4108 1.2745

0.47 1.1965 1.7721 2.5222 3.1887 2.1080 1.4233 1.2643

0.48 1.1857 1.7580 2.5244 3.1656 2.1290 1.4359 1.2540

0.49 1.1747 1.7436 2.5264 3.1421 2.1507 1.4490 1.2437

0.50 1.1637 1.7289 2.5281 3.1181 2.1725 1.4623 1.2334
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Table A2

Non-dimensional frequency factors l ¼ ð2fa2=pÞ=
ffiffiffiffiffiffiffiffiffiffiffi
D=rt

p
and their most sensitive ratios for the first four modes of vibration of a

rectangular plate (a=b ¼ 1:456)

n l(0,2) l(1,1) l(2,0) l(1,2) l(2,0)/l(0,2) l(1,2)/l(0,2) l(2,0)/l(1,1)

0.01 2.2668 2.3161 4.8053 5.1687 2.1199 2.2802 2.0747

0.02 2.2665 2.3057 4.8052 5.1524 2.1201 2.2733 2.0841

0.03 2.2659 2.2952 4.8051 5.1357 2.1206 2.2665 2.0935

0.04 2.2652 2.2847 4.8048 5.1189 2.1211 2.2598 2.1030

0.05 2.2643 2.2740 4.8045 5.1018 2.1218 2.2531 2.1128

0.06 2.2633 2.2631 4.8041 5.0845 2.1226 2.2465 2.1228

0.07 2.2617 2.2525 4.8037 5.0670 2.1239 2.2404 2.1326

0.08 2.2601 2.2416 4.8031 5.0492 2.1252 2.2341 2.1427

0.09 2.2583 2.2306 4.8025 5.0311 2.1266 2.2278 2.1530

0.1 2.2563 2.2195 4.8018 5.0128 2.1282 2.2217 2.1635

0.11 2.2540 2.2084 4.8011 4.9943 2.1300 2.2157 2.1740

0.12 2.2516 2.1971 4.8002 4.9755 2.1319 2.2098 2.1848

0.13 2.2489 2.1858 4.7993 4.9564 2.1341 2.2039 2.1957

0.14 2.2460 2.1743 4.7983 4.9371 2.1364 2.1982 2.2068

0.15 2.2429 2.1628 4.7972 4.9175 2.1388 2.1925 2.2181

0.16 2.2395 2.1511 4.7960 4.8977 2.1415 2.1870 2.2296

0.17 2.2360 2.1394 4.7947 4.8775 2.1443 2.1814 2.2411

0.18 2.2322 2.1276 4.7933 4.8571 2.1473 2.1759 2.2529

0.19 2.2281 2.1156 4.7919 4.8364 2.1507 2.1706 2.2650

0.2 2.2239 2.1036 4.7903 4.8155 2.1540 2.1653 2.2772

0.21 2.2194 2.0914 4.7942 4.7887 2.1601 2.1577 2.2923

0.22 2.2146 2.0792 4.7869 4.7726 2.1615 2.1551 2.3023

0.23 2.2097 2.0669 4.7850 4.7507 2.1655 2.1499 2.3151

0.24 2.2045 2.0544 4.7831 4.7285 2.1697 2.1449 2.3282

0.25 2.1990 2.0418 4.7810 4.7060 2.1742 2.1401 2.3416

0.26 2.1933 2.0292 4.7788 4.6832 2.1788 2.1352 2.3550

0.27 2.1874 2.0164 4.7764 4.6600 2.1836 2.1304 2.3688

0.28 2.1812 2.0035 4.7740 4.6366 2.1887 2.1257 2.3828

0.29 2.1748 1.9904 4.7714 4.6128 2.1939 2.1210 2.3972

0.3 2.1681 1.9773 4.7687 4.5886 2.1995 2.1164 2.4117

0.31 2.1611 1.9641 4.7658 4.5641 2.2053 2.1119 2.4265

0.32 2.1539 1.9507 4.7628 4.5392 2.2112 2.1074 2.4416

0.33 2.1464 1.9372 4.7596 4.5140 2.2175 2.1031 2.4569

0.34 2.1387 1.9235 4.7563 4.4884 2.2239 2.0987 2.4727

0.35 2.1307 1.9098 4.7528 4.4625 2.2306 2.0944 2.4886

0.36 2.1224 1.8959 4.7492 4.4361 2.2377 2.0901 2.5050

0.37 2.1138 1.8819 4.7453 4.4094 2.2449 2.0860 2.5215

0.38 2.1050 1.8677 4.7413 4.3823 2.2524 2.0819 2.5386

0.39 2.0959 1.8534 4.7370 4.3547 2.2601 2.0777 2.5558

0.4 2.0864 1.8389 4.7326 4.3267 2.2683 2.0738 2.5736

0.41 2.0767 1.8244 4.7279 4.2983 2.2766 2.0698 2.5915

0.42 2.0667 1.8096 4.7230 4.2695 2.2853 2.0659 2.6100

0.43 2.0564 1.7947 4.7178 4.2403 2.2942 2.0620 2.6287

0.44 2.0457 1.7797 4.7124 4.2105 2.3036 2.0582 2.6479

0.45 2.0348 1.7644 4.7067 4.1803 2.3131 2.0544 2.6676

0.46 2.0235 1.7491 4.7007 4.1497 2.3231 2.0508 2.6875

0.47 2.0119 1.7335 4.6944 4.1185 2.3333 2.0471 2.7080

0.48 2.0000 1.7178 4.6878 4.0868 2.3439 2.0434 2.7290

0.49 1.9877 1.7019 4.6808 4.0547 2.3549 2.0399 2.7503

0.5 1.9751 1.6858 4.6735 4.0220 2.3662 2.0364 2.7723
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